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HEAT TRANSFER OF A DISK ROTATING IN A CASING

V. M. Kapinos

ABSTRACT. Discussion of the heat
transfer between a heated rotating disk and
a cooling fluid flowing radially from the
center to the periphery in the gap between
the disk and the casing of a gas turbine
(with cooled rotors). The heat transfer
coefficient is determined making use of the
Reynolds analogy.

Notation

V V.s. - peripheral, radial, and axial /76*
components of velocity

r, R - radial coordinate and maximum radius

of disk

r -- radius at which cooling fluid enters

gap

rl - radius at which boundary layers of

disk and casing join
r R

x=--. X-- - relative radii

z - coordinate measured along normal to

disk face

t. - thicknesses of boundary layer at disk

and casing

a -- angular velocity of disk

Q - volume flow rate of cooling fluid

s - gap width

*Numbers in the margin indicate pagination of original
foreign text.

1



v- kinematic modulus of viscosity;

*,.a- local and average heat transfer

coefficients

td - disk temperature

to -- initial temperature of cooling fluid

- flow twist equal to -.

Heat transfer between a heated rotating disk and a cooling

fluid flowing radially from the center to the periphery in the

gap between the disk and the casing is found in gas turbines

with cooled rotors.

We consider flow in the gap without initial twist. In this

case, the flow core remains untwisted right up to the section at

which the boundary layers at the disk and casing join. Actually,

the equation of motion of the nonviscous flow core between the

boundary layers projected onto the peripheral direction has the

form:

dV VW? V

If the axial velocity V z = 0, integration of Equation (1)

gives:

V C

The constant of integration C = 0, since at the input to the gap

with r = ro by definition C = 0. Consequently, the peripheral

velocity in the flow core is also equal to zero up to the sec-

tion where viscous flow in the boundary layers extends over the

whole width of the gap. -Such a flow characteristic is verified

by experiments performed in [1].
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Absence of twist of the external flow (relative to the /77

boundary layer) permits one to assume the peripheral velocity

component profile in the turbulent boundary layer at the disk

with radial blowing out, just as for the freely rotating disk

[2]:

V f ""'N} (2)

Experiments carried out by V. S. Sedach showed that for

high flow rates, the radial velocity profile in the gap between

disks and casing is convex, close to the velocity profile in a

tube. In the case of low flow rates, the form of the radial

velocity profile is expected to be the same as the flow around

a freely rotating disk or a disk rotating in a casing without

flow [3, 4]. Consequently, the radial velocity distribution in

the boundary layer takes the form:

A similar binomial representation for the radial velocity with
flow was proposed by A. L. Kyznetsov [5]. At Vro - 0 and for

the value of the parameter z = 0.16, the profile (3) coincides

with the profile obtained by T. Karman for a freely rotating

disk. If the flow rate of the cooking fluid is large, such that
r' CV,,, then the radial velocity distribution is analogous to

the velocity distribution in a tube. This case of flow is

considered in [6].

The peripheral and radial velocity component profiles (2)

and (3) satisfy the following boundary conditions: for

z-O V,-re, V,-0; for z-8 V. O, V,.4,.
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We substitute (2), (3) into the equation for the angular

momentum of the boundary layer at the disk:

r' V,, dz )-

obtaining the flow stress according to the Blasius equation equal

to:

V7 4 I *'
..- co, Cos (4 )

Here the total velocity vector of flow around the disk is:

,-r I + (z + K, - 2wr W (5)

and the angle between this vector and the peripheral direction:

-arc cos = (t Kpi

Then to determine the boundary layer thickness, we obtain the

equation:

0 foosr8 (0 0.0.972 *

Integrating (6) with the initial condition x = 1, 6/r = 0 gives: /78

- 0.4%3 - ,-- 4 (7)
S lae x (goK vx + 1.428)

a1 K4. x1 ) + + 4.+__- dx. (8)



Combining Expressions (4) and (7), we find the dimensionless

flow stress and the coefficient of drag torque:

.Lin O.OMs - _L KA .T'5 M (9)

R

C.- 2 M-,k5, rdr C.- 0.4 22 (10)
O"' 4A Re (10)

For X - m and K ~ m the coefficient of drag torque:

which coincides with the solution of T. Karman [2].

We use the Reynold's analogy to obtain the heat transfer

coefficient. It is shown in [7] that, for the Prandtl number

Pr = 1 and a quadratic distribution of temperature head with

radius of a freely rotating disk, a similarity of temperature

and peripheral velocity component profiles occurs. The latter

will also be similar in the case being considered, if the

temperature head is reckoned from the initial temperature of

the cooling fluid [6]. It follows from their similarity:

NPL-Re Nu-. (11)

Substituting (9) into (11), we have:

Nu. - 0.026iReA. (K, x),

A+ (K,. . L' iX.. \ .. , (12)
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The average value of the Nusselt number will be, by

definition:

NouR -we.- R5 Nu -- o

3t d- ,* ) rr (13)

Noting that td - to = kr2 (k - arbitrary number) and inserting

(12) into (13), we find:

Nu - 0.134 Re.A (K,, X), A(K,, X) - (14)
X' tX' - 1)

By using the particular solutions of (12) and (14) satis- /79

fying a quadratic law for the variation of excess disk tempera-

ture, one can determine the heat transfer coefficient for an

arbitrary temperature distribution td(r). The calculation pro-

cedure is given in detail in [6, 8]. The final relationships

have the form:

Nun-- 0.0 Re:# A, to"

•*lx ' A. (15)

No - 0.0320 ReA (
r (16)

Here td(r) - to = 0, I(K,, x)- x .Ad. From Formulas (15) and

(16), for a constant disk temperature (0 = const), we find:
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Nu. - 0.026 ReBm (Kw ,; ,

B.(K,, x)- -- X I - (17)

Nou -. oA Re"sB(K,, X). B(KJ, X) [ (18)
X , (X - 1)

The functions (K, x),(K, x), A.(K, X), 4A(K, X), B.(K.,x)and R(K, X)

for determining the flow stress, drag torque coefficient, and

local and average heat transfer coefficients are calculated on

an electronic digital computer. A portion of the results is

presented graphically in Figures 1 - 5.

The dimensionless formulas (12), (14) - (18) are valid

for Pr = 1. If the relationship (9) is used for the flow stress,

then the calculation of the heat transfer gives NuM-Pfl, based

on the three-layer picture of the boundary layer according to

the method of T. Karman in the limits 5 < 0 Re.r10',24,44,

5KI:OI 0.5.Pr<5. The same results are obtained in [71 for a

freely rotating disk. Thus, in the first approximation, the

effect of the Prandtl number can be taken into account by

introducing the factor Pro0 6 into the formulas.

We compare the obtained approximate solutions for the

hydrodynamic drag and heat transfer of the disk with experimental

data.

Increase of the drag torque of a disk with flow was inves-

tigated by V. S. Sedach [1] (his experimental data were obtained

for Ri-Olf m-0.A. X-4). The calculated and experimental values
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4 Figure 6. Increase of drag
torque with flow rate in the

_5 gap between disk and casing.

1 - experimental data of
s - V. S. Sedach; 2 - calculation.

4A ,A 22 0 .0 4 - X of the increase of drag torque

Figure 5. Values of the for a disk with flow rate in
function B(K, X). comparison with the case of a

disk rotating in a closed casing
are presented in Figure 6. The calculated values of drag

torque are determined by summing over the section from x = 1
to x1 , where the flow core exists between the boundary layers,

and over the section from x, to x, where the viscous disturbance
region becomes equal to the gap width. Over the first section

the torque is determined from Formula (10). To find the torque
over the second section, the solution of L. A. Dorfman [9] was

used, which is obtained under the approximation that the boundary
layers are joined beginning at the input section. The coordinate

x1 , where the joining of the boundary layers occurs, is located

by successive approximations by summing the thicknesses of the
boundary layers of the disk and casing according to the given
value of K . The thickness of the boundary layer at the disk is /83

calculated from Formula (7); at the casing - from the relation-

ship:
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I 0 Re- 1  (19)r Rer

resulting from the momentum equation for the radial direction.

The radial velocity distribution in the boundary layer at the

casing is taken in the form V,. y,( '

As is seen in Figure 6, the calculated and experimental

values of AM are in satisfactory agreement in the region of

high flow rates, where the experimental determination of the

torque can be assumed to be more accurate.

Results of an experimental study of heat transfer for a

disk rotating in a thermally insulated casing with radial blow-

ing are presented in [10]. The experimental data for a disk

of thickness 45 mm in which the temperature distribution has a

quadratic form are generalized by the dimensionless formula

(Pr = 0.72):

Nu - 0.034 Re0 IK;oA X-.3 (a )Os (20)

In the experiments, the independent variables were varied

in the limits *l 40'cRe44le,0.64K,47:0, 2.15<X<2.7 . The depen-

dence of the number Nu on X was obtained through two points:

X = 2.15 and X = 2.7 for K = 2 = idem.

Approximation of the function A(KV, x) in the interval

2<X<3 for K,=2 (Figure 3) gives a relation coinciding with

the experimental data with great accuracy:

A(, X) = , X -  (21)

10



Approximating the function A(KV, X) in the parameter K for

X = 2.7 = idem (the dependence of Nu on K was established in

the experiments in an analogous manner), we find:

A(K,, X)- C,K;r (22)

The coefficients C, and C2 are averaged in such a manner that

(21) and (22) give the same value for the function A(KV, X) at

the point X = 2.7, K = 2. Then:

A (K,, X) - 0.294K, JX IS.R (23)

In the region bounded by 2 .X<3, 14K,8, the average error in

approximating the function A(KV, X) by the power Formula (23) is

less than 3.5%.

Substituting the approximate expression for the function

A(K , X) into Equation (14) and introducing the factor Pr'6

0.82, we obtain:

Nu - 0.0323 ReC'K, .:X"  (214)

The calculated relation (24) assumes the existence of a

nonviscous flow core in the gap between the disk and casing.

In order that this condition be satisfied for the experimental

relation (20), we determine that value of s/R for which the

boundary layers are not joined for the whole investigated range

of values of Re, K , X. The maximum thicknesses of the boundary /84

layers at the disk and casing for Re=-51W, K,-7, X-2.7 give

s/R = 0.125. It then follows from Formula (20) that:

Nu - 0.0306 Re'"K. O'X-'' .  (25)
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The discrepancy between the calculated and experimental relations

(24) and (25) with consideration of the error in approximating

the function A(K., X) does not exceed 9%.

We compare Equation (17) for 0 = const with the experi-

mental data of A. L. Kuznetsov [5], which were obtained with

uniform heating of the disk. The experimental relation for the

loca Nusselt number presented in [5] has the form in our notation:

Nu. 0.0235 (1 + b2) (1 - ).'75 Re) , b 0.25+ - (26)

The formula is valid for X = 2.7.

For small K the flow twist C can be set equal to zero.

Then, if K = 1, X = x = 2.7, we obtain from Formula (26):

Nu. = 0.0244 ReO 8.

We note that in these experiments the calorimeters on the disk

occupied a region bounded by the radii 135 and 278 mm; thus,

the actual value x = 2. Setting x = 2, K = 1 in Equation (17),

we find:

Nu, - 0.02-56 ReR. (Ko,, x) Pr0.6 = 0.0253 Re"8

Agreement between the calculated and experimental relations

also appears satisfactory in this case.

The experimental formula of E. Patrick and R. Smith is

presented in [11], which can be represented in the form:

Nuu = 0.123 (1 -- )o.5 Re 7 ?roI. o, 3 ( 27)
\12/ X (27
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Although it was noted in [11] that the scatter of experimental

data is very large and thus great accuracy should not be

expected from the formula, nonetheless, it is of interest to

compare it with the approximate theoretical solution.

According to the formula of E. Patrick and R. Smith NuM

1440 -- 1770 for Re = 106, x = 3, s/r = 0.05 -0.1, and C = 0.

According to Formula (17), we have for K = 0.5 - 1.0, Nu =

1440 - 1840 for K = 3 - 6 NuM = 1270 - 1300. The numbers

NuM appear close for small values of K ; with increasing K to

3 - 6, it is necessary to take r > 0 in Formula (27).

We consider the question of the effect of the relative

gap s/R on the heat transfer coefficient. It is obvious that

this effect must appear, if the boundary layers of the disk and

casing are joined in the peripheral part of the gap. Here one

can use the method used to determine the drag torque: in the

input section from x = 1 to xl the heat transfer coefficient

is calculated from the formulas of the present work, in the

section from xl to X - from formulas obtained under the assump-

tion that the boundary layers are joined [9]. As an example,

results are tabulated from a determination of the average /85

Nusselt number Nu = (a vR)/X) atthe disk surface with a quad-av av

ratic temperature distribution for various relative gaps s/R.

In the calculations Re = 106, X = 2.7, K = 2.0. The Nu

numbers of the two sections are averaged with the formula:

0.5NuX(x~ - ) + 2Nulx, x(i- :) dx

Nuav - ; Nu -- , Nu -- .
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The latter takes into account a quadratic variation of tempera-

ture with radius of the disk and cooling fluid in the second

section.

As is seen in the table, Nu displays an extremum over aav
wide range of s/R. Initially, the heat transfer coefficient

decreases with decreasing s/R; then with the reduction of the

dispersal section the heat transfer coefficient begins to

increase. In general, the variation of Nuav is small - about

5%. If - 0.5, then the effect of s/R on the heat transfer

can be taken into account approximately, as in the experimental

relation (20), by introducing the factor (- . The corres-

ponding values of Nu* are in the sixth column of the table.

Values of Nuc,calculated under the assumption that the boundary

layers are joined beginning at the input section,are presented

in the last column for comparison. As was to be expected,

there is satisfactory agreement with the previous calculations

in this case for small s/R.

TABLE**

X, Nu N Nu u Nu,R Nav

.... ... ... .. .. . . .. . ... .. ..... . . . . . .5

0,20 ->2,7 1700 - 1700 1700 1090
0,10 >2,7 1700 - 1700 1700 1250
0.08 2.58 1610 1550 1670 1690 1320
0.06 2,25 1350 10 605 1660 1400
0,04. 1,89 1105 1630 1620 1625 1500
0,02 1,45 '65 1690 1670 1560 1630

**Translator's Note: Commas in the numbers indicate
decimal points.

In conclusion, we note the effect of the radial temperature

gradient in the disk on the heat transfer rate,
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The calculations show that the magnitudes of NuM and Nu

determined from Formulas (12), (14), and (17), (18) - i.e.,

with quadratic and uniform temperature distributions with radius

- differ within 10 - 15%. Thus, in many cases they can be

applied directly. The accuracy of the formulas, as was shown

in the above comparison with a number of particular empirical

relations, is quite sufficient for engineering calculations

over a wide range of Re, K and X. Refinement of the heat

transfer coefficients using Equations (15), (16) appears

necessary only for thin disk rotors used in transport engines

and under conditions of a nonstationary temperature field with

large radial temperature gradients. The problem is solved by

successive approximations. The possibility of constructing

empirical formulas taking into account the effect of a radial

temperature gradient is discussed in [6, 12].
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